domingo, 18 de outubro de 2009

Funções do 2º Grau

Parábola: formas geométricas no cotidiano



Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:

As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo e etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.

A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.

As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau,
ax² + bx + c = 0, dependendo do valor do discriminante ∆(delta), podemos ter determinadas situações gráficas.

ATIVIDADE - Elabore inicialmente em seu caderno o gráfico da função nas situações abaixo e elabore um slide (em grupo) com os mesmos.

a) ∆ > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.

b) ∆ = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.
c) ∆ <0, a equação não possui raízes reais. A parábola não intercepta o eixo x.

Nenhum comentário:

Postar um comentário